Problem 1) After Ed eats 20% of his pie and Ann eats 40% of her pie, Ed has twice as much pie left as Ann. Find Ed’s original amount of pie as a percentage of Ann’s original pie.

[Problem submitted by Vin Lee, LACC Professor of Mathematics. Source: 2011 AMATYC Test #2]

Solution: Let \(x \) be the original amount of Ed’s pie and \(y \) be the original amount of Ann’s pie. Then the first sentence of the problem may be written as this equation: \(.8x = 2(.6y) \).

So, \(y = \frac{2}{3} x \). Ed’s original amount of pie as a percentage of Ann’s original pie is

\[
\frac{x}{y} \times 100\% \quad \text{and} \quad \frac{x}{y} \times 100\% = \frac{x}{2} \times 100\% = \frac{2x}{3} \times 100\% = 150\%.
\]
Problem 2) Express $\frac{\sqrt{4 + 2\sqrt{3}} - \sqrt{28 + 10\sqrt{3}}}{15}$ as a rational number.

[Problem submitted by Vin Lee, LACC Professor of Mathematics. Source: Saint Mary’s College Mathematics Contest Problems for Junior and Senior High School by Brother Alfred Brousseau, 1972]

Solution: Note that $4 + 2\sqrt{3} = (1 + \sqrt{3})^2$ and $28 + 10\sqrt{3} = (5 + \sqrt{3})^2$. So,

$$\frac{\sqrt{4 + 2\sqrt{3}} - \sqrt{28 + 10\sqrt{3}}}{15} = \frac{1 + \sqrt{3} - (5 + \sqrt{3})}{15} = \frac{-4}{15}$$
Problem 3) If b varies over all real numbers, upon what curve do the vertices of the parabolas with equations \(f(x) = x^2 + bx + 2 \) lie?

[Problem submitted by Vin Lee, LACC Professor of Mathematics. Source: 1989 AMATYC Exam #1]

Solution: The x-coordinate of the vertex of \(f(x) = x^2 + bx + 2 \) is i) \(x = -\frac{b}{2} \). The y-coordinate of the vertex is \(y = f\left(-\frac{b}{2}\right) \). So, ii) \(y = 2 - \frac{b^2}{4} \). From i) \(b = -2x \). Substitute into ii) to get \(y = 2 - x^2 \). The graph of this equation, a downward opening parabola whose vertex is (0,2), is the answer to the question.
Problem 4) The volumes of two cubes differ by 259 cm³. If the edges of one cube are each 4 cm greater than the edges of the other, find sum of the lengths of one edge of each cube.

[Problem submitted by Anatoliy Nikolaychuk, LACC Professor of Mathematics. Source: February 2000 AMATYC]

Solution: \((x + 4)^3 - x^3 = 259 \)
\[x^2 + 16x - 65 = 0 \]
\[(2x - 5)(2x + 13) = 0 \]
\[x = \frac{5}{2}, \quad x + 4 = \frac{13}{2} \]
\[x + (x + 4) = \frac{5}{2} + \frac{13}{2} = 9 \]
Problem 5) Sand is pouring from a funnel onto a cone-shaped pile which is 20 feet high and 50 feet in diameter at its base. If the sand is coming out of the funnel at a rate of 2.5 cubic feet per second, how long will it take for the height of the pile to increase 1 inch, assuming that the shape of the pile does not change?

[Problem submitted by Vin Lee, LACC Professor of Mathematics. Source: Saint Mary’s College Mathematics Contest Problems for Junior and Senior High School by Brother Alfred Brousseau, 1972]

Solution: Let x be the change in the radius of the base. Then

$$\frac{20}{25} = \frac{20 + \frac{1}{12}}{25 + x}$$

$$x = \frac{5}{48}.$$

The volume of a cone is $V = \frac{1}{3} \pi r^2 h$.

The change in volume is $\Delta V = \frac{\pi}{3} (25 + \frac{5}{48})^2 (20 + \frac{1}{12}) - \frac{\pi}{3} \cdot 25^2 \cdot 20 = 164.3$.

$$\text{time} = \frac{164.3}{2.5} = 65.7 \text{ seconds or } \text{time} = 20.9\pi \text{ seconds}$$
Problem 6) Suppose x and $f(x)$ are real numbers. Find the inverse function of $f(x) = x + \sqrt{x}$. That is, find a function $f^{-1}(x)$ such that $f^{-1}[f(x)] = x$ for every x in the domain of $f(x)$. Prove your answer is correct.

[Problem submitted by Vin Lee, LACC Professor of Mathematics. Source: Vin Lee]

Solution: Let $y = f(x)$ and solve $y = x + \sqrt{x}$ for x:

$$0 = x + \sqrt{x} - y.$$ Use the quadratic formula to get

$$\sqrt{x} = \frac{-1 \pm \sqrt{1 + 4y}}{2}.$$ So,

$$x = \left(\frac{-1 \pm \sqrt{1 + 4y}}{2}\right)^2.$$ Since $f(x)$ is a one-to-one function, its inverse is a function. This gives two possibilities for $f^{-1}(x)$. Either

A) $f^{-1}(x) = \left(\frac{-1 - \sqrt{1 + 4x}}{2}\right)^2$ or B) $f^{-1}(x) = \left(\frac{-1 + \sqrt{1 + 4x}}{2}\right)^2$, but not both. Consider the first possibility:

A) $f^{-1}(x) = \left(\frac{-1 - \sqrt{1 + 4x}}{2}\right)^2$

$$= \frac{1}{2} + \frac{1}{2} \sqrt{1 + 4x} + x.$$ Then

$$f^{-1}[f(x)] = \frac{1}{2} + \frac{1}{2} \sqrt{1 + 4(x + \sqrt{x})} + x + \sqrt{x}$$

$$= \frac{1}{2} + \frac{1}{2} \sqrt{(2\sqrt{x} + 1)^2} + x + \sqrt{x}$$

$$= x + 2\sqrt{x} + 1$$

$\neq x$. So, A) is not the inverse function. Now consider the second possibility:

B) $f^{-1}(x) = \left(\frac{-1 + \sqrt{1 + 4x}}{2}\right)^2$

$$= \frac{1}{2} - \frac{1}{2} \sqrt{1 + 4x} + x.$$ Then

$$f^{-1}[f(x)] = \frac{1}{2} - \frac{1}{2} \sqrt{1 + 4(x + \sqrt{x})} + x + \sqrt{x}$$

$$= \frac{1}{2} - \frac{1}{2} \sqrt{(2\sqrt{x} + 1)^2} + x + \sqrt{x}$$

$$= x.$$ Therefore, B) is the inverse function.
Problem 7) Find the sum: $\sum_{k=1}^{\infty} \frac{k}{8^k}$.

[Problem submitted by Anatoliy Nikolaychuk, LACC Professor of Mathematics. Source: February 2000 AMATYC]

Solution: Let $S = \sum_{k=1}^{\infty} \frac{k}{8^k}$. Then

\[
S = \frac{1}{8} + \frac{2}{8^2} + \frac{3}{8^3} + \frac{4}{8^4} + \cdots
\]

\[
S = \frac{1}{8^2} + \frac{2}{8^3} + \frac{3}{8^4} + \cdots
\]

\[
S - S = \frac{1}{8} + \frac{1}{8^2} + \frac{1}{8^3} + \frac{1}{8^4} + \cdots
\]

\[
\frac{7}{8} S = \sum_{k=1}^{\infty} \frac{1}{8^k}
\]

\[
\frac{7}{8} S = \frac{1}{8 - \frac{1}{8}}
\]

\[
S = \frac{8}{49}
\]
Problem 8) Suppose \(x \geq 0 \). Find the inverse function of \(f(x) = 2^{x-1} + 2^{-(x+1)} \). That is, find a function \(f^{-1}(x) \) such that \(f^{-1}[f(x)] = x \) for every \(x \) in the domain of \(f(x) \). Also, find the domain and range of \(f^{-1}(x) \).

[Problem submitted by Vin Lee, LACC Professor of Mathematics. Source: Vin Lee]

Solution: Note that the domain of \(f(x) \) is \([0, \infty)\). \(f(x) \) is increasing and \(f(0) = 1 \).

[By plotting a few points of \(f(x) \) it can be seen to be increasing or it can be proved to be increasing on \((1, \infty)\) by taking its derivative.] So, the range of \(f(x) \) is \([1, \infty)\).

Therefore, the domain of \(f^{-1}(x) \) is \([1, \infty)\) and its range is \([0, \infty)\). Let \(y = f(x) \) and solve \(y = 2^{x-1} + 2^{-(x+1)} \) for \(x \). First multiply both sides of the equation by \(2^{x+1} \) to get

\[
2y2^x = 2^{2x} + 2^0
\]

\[
0 = 2^{2x} - 2y2^x + 1.
\]

Use the quadratic formula to get

\[
x = \frac{2y \pm \sqrt{4y^2 - 4}}{2}
\]

\[
x = y \pm \sqrt{y^2 - 1}.
\]

Because \(x \geq 0, 2^x \geq 1 \). However, \(y - \sqrt{y^2 - 1} \) is not greater than or equal to 1 for every \(y \in [1, \infty) \). For example

\[
2 - \sqrt{2^2 - 1} = 2 - \sqrt{3} = .27.
\]

Therefore,

\[
x = \log_2(y + \sqrt{y^2 - 1}).
\]

Substitute \(f^{-1}(x) \) for \(x \) and \(x \) for \(y \) to get

\[
f^{-1}(x) = \log_2(x + \sqrt{x^2 - 1}).
\]

* Or prove that \(y - \sqrt{y^2 - 1} < 1 \) for every \(y \in (1, \infty) \):

\[
1 < y
\]

\[
1 - y < 0
\]

\[
2 - 2y < 0
\]

\[
1 - 2y < -1
\]

\[
1 - 2y + y^2 < -1 + y^2
\]

\[
(y - 1)^2 < y^2 - 1
\]

\[
y - 1 < \sqrt{y^2 - 1}
\]

\[
y - \sqrt{y^2 - 1} < 1
\]
Problem 9) In the equation \(x^4 - 4x^3 - 12x^2 - 13x + 20 = 0 \) what is the sum of the squares of the four roots (solutions)?

[Problem submitted by Vin Lee, LACC Professor of Mathematics. Source: Saint Mary’s College Mathematics Contest Problems for Junior and Senior High School by Brother Alfred Brousseau, 1972]

Solution: Let \(a, b, c, \) and \(d \) be the roots of the equation. Then
\[
(x - a)(x - b)(x - c)(x - d) = x^4 - 4x^3 - 12x^2 - 13x + 20.
\]
Now multiply to get the following.
\[
\begin{align*}
(x - a)(x - b) &= x^2 - (a + b)x + ab \\
(x - c)(x - d) &= x^2 - (c + d)x + cd
\end{align*}
\]
Next multiply \([x^2 - (a + b)x + ab][x^2 - (c + d)x + cd]\) to get
\[
x^4 - (a + b + c + d)x^3 + (ab + ac + ad + bc + bd + cd)x^2 - [ab(c + d) + cd(a + b)]x + abcd
\]
Equating the third and second degree coefficients in this equation with those in the equation given in the problem, we get \(a + b + c + d = 4 \) and \(ab + ac + ad + bc + bd + cd = -12 \). These two values will be substituted into an equation below.

Consider \((a + b + c + d)^2 \). Expand to get this equation:
\[
(a + b + c + d)^2 = a^2 + b^2 + c^2 + d^2 + 2(ab + ac + ad + bc + bd + cd).
\]
So, \(4^2 = a^2 + b^2 + c^2 + d^2 + 2(-12) \) and \(a^2 + b^2 + c^2 + d^2 = 40 \).
Problem 10 Let $\hat{\Diamond}$ be an operation (like addition or multiplication) which associates each pair x,y of real numbers with the real number $x \hat{\Diamond} y$ such that for all real numbers x, y, z the following conditions are satisfied: 1) $x \hat{\Diamond} x = x$, 2) $x \hat{\Diamond} y = y \hat{\Diamond} x$, 3) $x \hat{\Diamond} (y \hat{\Diamond} z) = (x \hat{\Diamond} y) \hat{\Diamond} z$, and 4) if $y < z$ and $x \hat{\Diamond} y \neq x$ then $x \hat{\Diamond} y < x \hat{\Diamond} z$. Prove that for every pair of real numbers x,y $x \hat{\Diamond} y = x$ or $x \hat{\Diamond} y = y$. Also, find an operation that satisfies these four conditions.

[Problem submitted by Vin Lee, LACC Professor of Mathematics. Source: 1994-95 Pomona-Wisconsin Talent Search, Problem Set IV]

Solution: Assume that there exists a pair of real numbers x and y such that $x \hat{\Diamond} y \neq x$ and $x \hat{\Diamond} y \neq y$. From condition 1) we know $x \neq y$. Without loss of generality say $y < x$. Then from conditions 1) and 4) we can conclude that $x \hat{\Diamond} y < x \hat{\Diamond} x = x$; that is, A) $x \hat{\Diamond} y < x$.

Now using conditions 1), 2), and 3) we conclude that $y \hat{\Diamond} (x \hat{\Diamond} y) = (y \hat{\Diamond} x) \hat{\Diamond} y = x \hat{\Diamond} (y \hat{\Diamond} y) = x \hat{\Diamond} y$; that is, B) $y \hat{\Diamond} (x \hat{\Diamond} y) = x \hat{\Diamond} y$.

Next using our assumption $x \hat{\Diamond} y \neq y$, A), B), and condition 4) we get that $x \hat{\Diamond} y < x$ and $y \hat{\Diamond} (x \hat{\Diamond} y) \neq y$ implies that $y \hat{\Diamond} (x \hat{\Diamond} y) < y \hat{\Diamond} x$. Then according to B) and condition 1) $x \hat{\Diamond} y < x \hat{\Diamond} y$ which is a contradiction.

So, our original assumption that there exists a pair of real numbers x,y such that $x \hat{\Diamond} y \neq x$ and $x \hat{\Diamond} y \neq y$ must be false. Therefore, for every pair of real numbers x,y $x \hat{\Diamond} y = x$ or $x \hat{\Diamond} y = y$.

Two operations satisfying all four of the given conditions are $\max\{x,y\}$ and $\min\{x,y\}$.